Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly

نویسندگان

  • Hoo Keun Park
  • Seong Woong Yoon
  • Yun Jae Eo
  • Won Woo Chung
  • Gang Yeol Yoo
  • Ji Hye Oh
  • Keyong Nam Lee
  • Woong Kim
  • Young Rag Do
چکیده

In this study, we report the concerted fabrication process, which is easy to transform the size of active emitting area and produce polarized surface light, using the electric-field-assisted assembly for horizontally assembled many tiny nanorod LEDs between two metal electrodes. We fabricate the millions of individually separated 1D nanorod LEDs from 2D nanorod arrays using nanosphere lithography, etching and cutting process of InGaN/GaN LED structure on a flat sapphire substrate. The horizontally assembled InGaN-based nanorods LED device shows bright (~2,130 cd/m(2)) and uniform polarized (polarization ratio, ρ = ~0.61) green emissions from large area (0.7 cm × 0.6 cm) planar surface. The realization of a horizontally assembled nanorod LED device can prove the concept of an innovative idea to fabricate formable and scalable polarized surface LED lighting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy

Self-assembled InGaN quantum dots were grown in the Stranski–Krastanov mode by plasma-assisted molecular beam epitaxy. The average dot height, diameter and density are 3 nm, 30 nm and 7 × 1010 cm–2, respectively. The dot density was found to decrease as the growth temperature increases. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red sh...

متن کامل

Disentangling the effects of nanoscale structural variations on the light emission wavelength of single nano-emitters: InGaN/GaN multiquantum well nano-LEDs for a case study.

The scattering in the light emission wavelength of semiconductor nano-emitters assigned to nanoscale variations in strain, thickness, and composition is critical in current and novel nanotechnologies from highly efficient light sources to photovoltaics. Here, we present a correlated experimental and theoretical study of single nanorod light emitting diodes (nano-LEDs) based on InGaN/GaN multiqu...

متن کامل

Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes

Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the curr...

متن کامل

Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output p...

متن کامل

Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells.

Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative recombination rate is studied. Studies show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016